The Next-Generation Semiconductor for Power Electronics




Researchers have demonstrated the high-performance potential of an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power grid, military ships and aircraft.

The Next-Generation Semiconductor for Power Electronics




The semiconductor is promising for next-generation “power electronics,” or devices needed to control the flow of electrical energy in circuits. Such a technology could help to reduce global energy use and greenhouse gas emissions by replacing less efficient and bulky power electronics switches now in use.

The schematic at left shows the design for an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power grid, military ships and aircraft. At right is an atomic force microscope image of the semiconductor. (Purdue University image/Peide Ye)The transistor, called a gallium oxide on insulator field effect transistor, or GOOI, is especially promising because it possesses an “ultra-wide bandgap,” a trait needed for switches in high-voltage applications.

Compared to other semiconductors thought to be promising for the transistors, devices made from beta gallium oxide have a higher “breakdown voltage,” or the voltage at which the device fails, said Peide Ye, Purdue University’s Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering.

Findings are detailed in a research paper published this month in IEEE Electron Device Letters. Graduate student Hong Zhou performed much of the research.

The team also developed a new low-cost method using adhesive tape to peel off layers of the semiconductor from a single crystal, representing a far less expensive alternative to a laboratory technique called epitaxy. The market price for a 1-centimeter-by-1.5-centimeter piece of beta gallium oxide produced using epitaxy is about $6,000. In comparison, the “Scotch-tape” approach costs pennies and it can be used to cut films of the beta gallium oxide material into belts or “nano-membranes,” which can then be transferred to a conventional silicon disc and manufactured into devices, Ye said.

READ  Doorbell

Read more: The Next-Generation Semiconductor for Power Electronics




Leave a Comment

*
= 5 + 3

(Spamcheck Enabled)

Read previous post:
HARDKERNEL ODROID-H2 WITH INTEL CELERON J4105 TO LAUNCH SOON 1
HARDKERNEL ODROID-H2 WITH INTEL CELERON J4105 TO LAUNCH SOON

Hardkernel started working on an ODROID x86 board since last year, and the board was slated to launch later in 2017 according to...

Close
Scroll to top