Analyzing the vintage 8008 processor from die photos

The revolutionary Intel 8008 microprocessor is 45 years old today (March 13, 2017), so I figured it’s time for a blog post on reverse-engineering its internal circuits. One of the interesting things about old computers is how they implemented things in unexpected ways, and the 8008 is no exception. Compared to modern architectures, one unusual feature of the 8008 is it had an on-chip stack for subroutine calls, rather than storing the stack in RAM. And instead of using normal binary counters for the stack, the 8008 saved a few gates by using shift-register counters that generated pseudo-random values. In this article, I reverse-engineer these circuits from die photos and explain how they work.

Analyzing the vintage 8008 processor from die photos

The image below shows the 8008’s tiny silicon die, highly magnified. Around the outside of the die, you can see the 18 wires connecting the die to the chip’s external pins. The 8008’s circuitry is built from about 3500 tiny transistors (yellow) connected by a metal wiring layer (white). This article will focus on the stack circuits on the right side of the chip and how they interact with the data bus (blue).

For the 8008 processor’s birthday, I’m using the date of its first public announcement, an article in Electronics on March 13, 1972 entitled “8-bit parallel processor offered on a single chip.” This article described the 8008 as a complete central processing unit for use in “intelligent terminals” and stated that chips were available at $200 each.1

You might think that an intelligent terminal is a curiously specific application for the 8008 processor. There’s an interesting story behind that, going back to the roots of the chip: the Datapoint 2200 “programmable terminal”, introduced in June 1970. The popular Datapoint 2200 was essentially a desktop minicomputer with its processor consisting of a board full of simple TTL chips. The photo below shows the CPU board from the Datapoint 2200. The chips are gates, flip flops, decoders, and so forth, combined to build a processor, since microprocessors didn’t exist at the time.

READ  Open Source DIY Laptop Kit By Olimex

Read more: Analyzing the vintage 8008 processor from die photos

Leave a Comment

= 4 + 8

(Spamcheck Enabled)

Read previous post:
Simple Water Quality Analysis

An easy-to-build and low-cost water quality monitor. Things used in this project Hardware components Arduino MKR1000 × 1 Jumper wires...

Scroll to top