Researchers from the University of Twente MESA+ research institute, together with the company SolMateS, have developed a new type of transistor to reduce the power consumption of microchips. The basic element of modern electronics, namely the transistor, suffers from significant current leakage. By enveloping a transistor with a shell of piezoelectric material, which distorts when voltage is applied, researchers were able to reduce this leakage by a factor of five (compared to a transistor without this material). An article presenting the prototype of the transistor appears in the June issue of IEEE Transactions on Electron Devices, an authoritative scientific journal in the field of transistor research.
Current leakage in transistors is one of the causes of battery depletion in portable electronic devices, such as smartphones and laptops. With the new type of transistor, either the current leakage (while the transistor is not active) or the energy consumption (while the transistor is active) can be addressed. In the latter case, it is estimated that energy consumption can be reduced by approximately 10%.
Intelligent squeezing
The trick lies in a piezoelectric material which is applied to the exterior of the transistor. The piezoelectric material expands when you apply a voltage to it and compresses the silicon in the transistor with a pressure of about 10,000 atmospheres. This high pressure ensures that electrons flow through the transistor faster. You can therefore make microchips more efficient by ‘intelligently squeezing the transistor’.
Incidentally, existing transistors are already put under high pressure in order to improve their efficiency. In this case, however, the pressure is permanently built in, which actually increases the current leakage. In the prototype designed by the UT, the transistor is only put under pressure when required and this makes a big difference. The electric current needed to switch the transistor from on to off is thereby partly replaced by mechanical tension.
For more detail: Prototype of new transistor for lower power consumption