Working with a Load Cell and an Arduino

We built a system that uses eight air-clamping cylinders (McMaster-Carr 62185K64) to push down on a piece of glass to seal it to a sidewall. A number of times, the glass has cracked. So, this project is an attempt to come up with an inexpensive way of measuring how many pounds of force the cylinders are exerting.

The sensor that we want to use is a load cell (an arrangement of strain gauges). The specific load cell that we’re using is the FX 1901 Compression Load Cell. We bought ours from Mouser for $30.

Load cells only make a very small change in voltage, so you have to use an instrumentation amplifier to increase the voltage to something we can use. The specific instrumentation amplifier that we’re using is the Burr-Brown INA125 Instrumentation Amplifier. This also came from Mouser and cost just under $6.

The fastest way to hook everything together and see if it would work was to use an Arduino board and use the computer for readout. These boards can be purchased for around $30.

Here is a basic schematic of what we were trying to do.

Working with a Load Cell and an Arduino schematic

Here is how everything looked hooking up all the parts.

Working with a Load Cell and an Arduino

Once everything is hooked up, we just needed to write a program that would read analog pin 0 on the arduino, since that’s where we hooked up the output of the amplifier.

// Arduino with load cell

// Put two known loads on the sensor and take readings. Put those values
// here.
float aReading = 192.0;
float aLoad = 15.0; // lbs.
float bReading = 344.0;
float bLoad = 24.3; // lbs.

long time = 0;
int interval = 500; // Take a reading every 500 ms

void setup() {
  Serial.begin(9600);
}

void loop() {
  float newReading = analogRead(0);

  // Calculate load based on A and B readings above
  float load = ((bLoad - aLoad)/(bReading - aReading)) * (newReading - aReading) + aLoad;

  // millis returns the number of milliseconds since the board started the current program
  if(millis() > time + interval) {
    Serial.print("Reading: ");
    Serial.print(newReading,1); // 1 decimal place
    Serial.print("  Load: ");
    Serial.println(load,1);  // 1 decimal place, println adds a carriage return
    time = millis();
  }
}

For more detail: Working with a Load Cell and an Arduino


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top