The Picture Drawing Robot

A Microcontroller project By Garrett Hoch and Sarah Holmes

Robot Objective

To move around to create two different figures. We will have the robot draw the star first then move backwards to draw the circle.

Approach

- Use two DC Encoders to measure the distance the robot travels.
- Relate the circumference of the wheels to the encoder outputs.
- Create the robot to run autonomously

Hardware Schematic

Pin Connections

Encoder Output

- There are two encoders per wheel but for our purposes we are using only one on each wheel.
- Each wheel has 12 teeth.

Wheels and H-Bridge Circuit

- The wheels have a circumference of 5.18" which is .43" per encoder signal.
- The H-Bridge requires a voltage of 5.3V to operate thus two batteries will be needed to meet that requirement.

Pseudocode

Main

intialize PTT for 4 ouputs and 2 inputs initialize Input capture for PT4 and PT5 enable interrupts

while linecount is less than 5 {
while edgecount is less than distance {
 move both wheels forward
}
Stop right wheel rotate left wheel 324 degrees
increment line count

while edgecount is less than distance {
 rotate left wheel quicker then right
 rotate right wheel slower then left

Pseudocode Cont'd

Input capture { ISR increment edgecount clear flag Function leftwheel{ turn PT1 to 1 delay for duty1 turn PT1 to 0 delay for period - duty1 Function rightwheel{ turn PT2 to 1 delay for dutAy2 turn PT2 to 0 delay for period - duty2 ł

Summary

Challenge:

Create a robot to complete a predetermined pattern

Result:

- The HCS912 microcontroller was the interface for 2 DC motors/encoders.
- The encoders track the distance traveled by the wheels
- The robot runs autonomously

Questions?

