Scientists build thinnest-possible LEDs to be stronger, more energy efficient

Most modern electronics, from flat-screen TVs and smartphones to wearable technologies and computer monitors, use tiny light-emitting diodes, or LEDs. These LEDs are based off of semiconductors that emit light with the movement of electrons. As devices get smaller and faster, there is more demand for such semiconductors that are tinier, stronger and more energy efficient.

University of Washington scientists have built the thinnest-known LED that can be used as a source of light energy in electronics. The LED is based off of two-dimensional, flexible semiconductors, making it possible to stack or use in much smaller and more diverse applications than current technology allows.

LEDs to be stronger

“We are able to make the thinnest-possible LEDs, only three atoms thick yet mechanically strong. Such thin and foldable LEDs are critical for future portable and integrated electronic devices,” saidXiaodong Xu, a UW assistant professor in materials science and engineering and in physics.

Xu along with Jason Ross, a UW materials science and engineering graduate student, co-authored a paper about this technology that appeared online March 9 in Nature Nanotechnology.

Most consumer electronics use three-dimensional LEDs, but these are 10 to 20 times thicker than the LEDs being developed by the UW.

“These are 10,000 times smaller than the thickness of a human hair, yet the light they emit can be seen by standard measurement equipment,” Ross said. “This is a huge leap of miniaturization of technology, and because it’s a semiconductor, you can do almost everything with it that is possible with existing, three-dimensional silicon technologies,” Ross said.

The UW’s LED is made from flat sheets of the molecular semiconductor known as tungsten diselenide, a member of a group of two-dimensional materials that have been recently identified as the thinnest-known semiconductors. Researchers use regular adhesive tape to extract a single sheet of this material from thick, layered pieces in a method inspired by the2010 Nobel Prize in Physics awarded to the University of Manchester for isolating one-atom-thick flakes of carbon, called graphene, from a piece of graphite.

 

For more detail: Scientists build thinnest-possible LEDs to be stronger, more energy efficient


A Propos De L'Auteur

Ibrar Ayyub

Je suis expérimenté, rédacteur technique, titulaire d'une Maîtrise en informatique de BZU Multan, Pakistan à l'Université. Avec un arrière-plan couvrant diverses industries, notamment en matière de domotique et de l'ingénierie, j'ai perfectionné mes compétences dans la rédaction claire et concise du contenu. Compétent en tirant parti de l'infographie et des diagrammes, je m'efforce de simplifier des concepts complexes pour les lecteurs. Ma force réside dans une recherche approfondie et de présenter l'information de façon structurée et logique format.

Suivez-Nous:
LinkedinTwitter

Laisser un Commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

fr_FRFrench
Faire défiler vers le Haut